The KP2000 series is a $96 x 96 \mathrm{~mm}$ digital program controller with the indicating accuracy of $\pm 0.1 \%$, the control cycle of approximately 0.1 seconds and maximum 30 program patterns (maximum 19 steps/ pattern).
The configuration of highly functional system is enabled by various options including 2 transmission signal outputs, 2 communications ports and arbitrarily-allocation of digital inputs/outputs.

■ FEATURES

- Large easy-to-view 5-digit display

Process value (PV) and set value (SV) are displayed by large easy-to-view 5 -digit display indicators. The resolution of $0.1^{\circ} \mathrm{C}$ is enabled for more than $1000^{\circ} \mathrm{C}$.

- Outstanding controllability

Two types of PID algorithms, the position-type PID algorithm and the speed-type PID algorithm, have been installed. You can select the optimum PID algorithm for an object controlled.

- Program pattern

Settings of maximum 19 steps per pattern and maximum 30 sets of patterns are enabled. Repeating of a whole program pattern, linking of program patterns and repeating of a specific step in a program pattern are enabled, too.

- Versatile control functions provided

Versatile control functions, such as the automatic PID system, which executes control by PID parameters preset at every SV sections, and selection of the 2-output control system from PID system and split system for 2-output types, are available.

- Communications 2-port type provided

Models with 2 communications ports are available. In addition, speeding up and highly-functionalization of communications have been realized. For example, you can use 1 port for high order communications with a personal computer and another port for the communications remote (digital remote) function. The communications protocol can be arbitrarily selected from [MODBUS] and [PRIVATE].

- Transmission signal 2-output type provided

2 types of transmission signal output, the high-precision type (0.1% of full scale) and the general type (0.3% of full scale), are available. Transmission signal 2-output types with these 2 transmission signal outputs and models with transmitter power supply are available.

DI/DO arbitrarily-allocation

When the digital input (DI) or the digital output (DO) is added, arbitrarily-allocation for assigning functions to those DI/DO's is enabled. It is the function enabling allocations such as [External drive input] to DI1 to DI3 and [Pattern selecting input] to DI4 to DI6.

- Output up to 8 points of time signals enabled

With the 8 digital outputs type added, up to 8 points of time signals can be outputted by allocating time signal TS1 to TS8.

- Heater disconnection alarm

The heater disconnection alarm can be added to ON-OFF pulse output types or SSR drive pulse types only.

By connecting the designated CT externally, the current value of heater is measured and can be indicated on the operation screen.

- Conforming to international safety standards and

 European directives (CE)The controller is conformity with European directives (CE), and is UL and c-UL approved.

- Conforming to RoHS

The controller is an environmental consideration product which does not contain directed hazardous substances such as lead, etc.

MODELS

nput signal
0 : Universal input
4: 4-wire resistance thermometer
Control mode (Output No. 1)
1: ON-OFF pulse type PID
2: ON-OFF servo type PID (Standard load specification)
3: Current output type PID
5: SSR drive pulse type PID
6: Voltage output type PID
8: ON-OFF servo type PID (Very light load specification) Control mode (Output No. 2)*
0 : None
1: ON-OFF pulse type PID *1
3: Current output type PID *1
5: SSR drive pulse type PID *1
6: Voltage output type PID *1
1st zone*
0: None
9: Heater disconnection alarm*2
P: 6 Digital inputs
M:4 Digital inputs + Heater disconnection alarm*2
T: 6 Digital outputs
N: 4 Digital outputs + Heater disconnection alarm*2 2nd zone*
0: None
1: Transmission signal output (High-precision type: $4-20 \mathrm{~mA}$)
2: Transmission signal output (High-precision type: 0-1V)
3: Transmission signal output (High-precision type: $0-10 \mathrm{~V}$)
4: Transmission signal output (High-precision type: Others)
J: Transmission signal output (General type: 4-20mA)
K: Transmission signal output (General type: 0-1V)
L: Transmission signal output (General type: 0-10V)
9: Heater disconnection alarm*2
P: 6 Digital inputs
M: 4 Digital inputs + Heater disconnection alarm*2
T: 6 Digital outputs
N: 4 Digital outputs + Heater disconnection alarm*2 2nd PLUS zone*
0: None
J: 2nd transmission signal output (General type:4-20mA)*3
K : 2nd transmission signal output (General type:0-1V)*3
L : 2nd transmission signal output (General type:0-10V)*3
H : Transmitter power supply*4
rd zone
0: None
R: Communications 1 port (RS232C) +3 Digital inputs
A: Communications 1 port (RS422A) +1 Digital input
S: Communications 1 port (RS485) +3 Digital inputs B: Communications 2 ports (RS232C + RS232C) +1 Digital input C: Communications 2 ports (RS232C + RS422A $)+1$ Digital input
D: Communications 2 ports (RS232C + RS485) +1 Digital input
E: Communications 2 ports (RS485 + RS232C) +1 Digital input
F: Communications 2 ports (RS485 + RS422A) +1 Digital input
G: Communications 2 ports (RS485 + RS485) + 1 Digital input
9: Heater disconnection alarm*2
P: 6 Digital inputs
M : 4 Digital inputs+ Heater disconnection alarm*2
T: 6 Digital outputs
N: 4 Digital outputs + Heater disconnection alarm*2 U: 8 Digital inputs
V: 6 Digital inputs + Heater disconnection alarm*2 W:8 Digital outputs
X: 6 Digital outputs + Heater disconnection alarm*2
Y: 3 Digital inputs + 5 Digital outputs
Z: 4 Digital inputs +4 Digital outputs
Case color
G: Gray
B: Black

- Panel sealing and terminal cover *

0: None
1: Terminal cover
2: IP54 panel sealing
3: IP54 panel sealing + Terminal cover
A: 100 to 240 V (AC)

* Option

D: $24 \mathrm{VAC} / 24 \mathrm{VDC}$
*1 The control mode (Output No.1) can be selected from 1,3,5 or 6 only.
*2 Only available to the unit having output No. 1 (or No.2) of 1or 5.
Multiple selection in different option zone is not available.
In case of pulse type in both Output No. 1 and No.2, output No. 1 makes alarm judgement.
*3 It can be selected w hen the 2nd zone is 1, 2, 3 or 4 only.
*4 It can be selected w hen the 2nd zone is $0,1,2,3,4, \mathrm{~J}, \mathrm{~K}$ or L only.
Note:For options common to 1st zone, 2nd zone and 3rd zone, assign them in the order of [9], $[\mathrm{P}]$ and $[\mathrm{M}]$ from 3rd zone first.

MEASUREMENT RANGES
Universal input

Measuring ranges		Scale ranges
Thermocouples	B	0.0 to $1820.0^{\circ} \mathrm{C}$
	R	$\begin{aligned} & 0.0 \text { to } 1760.0^{\circ} \mathrm{C} \\ & 0.0 \text { to } 1200.0^{\circ} \mathrm{C} \end{aligned}$
	S	0.0 to $1760.0^{\circ} \mathrm{C}$
	K	$\begin{array}{r} -200.0 \text { to } 1370.0^{\circ} \mathrm{C} \\ 0.0 \text { to } 600.0^{\circ} \mathrm{C} \\ -200.0 \text { to } 300.0^{\circ} \mathrm{C} \end{array}$
	E	-270.0 to $1000.0^{\circ} \mathrm{C}$ 0.0 to $700.0^{\circ} \mathrm{C}$ -270.0 to $300.0^{\circ} \mathrm{C}$ -270.0 to $150.0^{\circ} \mathrm{C}$
	J	-200.0 to $1200.0^{\circ} \mathrm{C}$ -200.0 to $900.0^{\circ} \mathrm{C}$ -200.0 to $400.0^{\circ} \mathrm{C}$ -100.0 to $200.0^{\circ} \mathrm{C}$
	T	$\begin{array}{ll} \hline-270.0 \text { to } & 400.0^{\circ} \mathrm{C} \\ -200.0 \text { to } & 200.0^{\circ} \mathrm{C} \\ \hline \end{array}$
	WRe5-WRe26	0.0 to $2310.0^{\circ} \mathrm{C}$
	W-WRe26	0.0 to $2310.0^{\circ} \mathrm{C}$
	NiMo-Ni	-50.0 to $1410.0^{\circ} \mathrm{C}$
	CR-AuFe	0.0 to 280.0 K
	N	0.0 to $1300.0^{\circ} \mathrm{C}$
	PR5-20	0.0 to $1800.0^{\circ} \mathrm{C}$
	PtRh40-PtRh20	0.0 to $1880.0^{\circ} \mathrm{C}$
	Platinel II	$0.0 \text { to } 1390.0^{\circ} \mathrm{C}$ $0.0 \text { to } 600.0^{\circ} \mathrm{C}$
	U	-200.0 to $400.0^{\circ} \mathrm{C}$
	L	-200.0 to $900.0^{\circ} \mathrm{C}$
DC voltage	10 mV	-10 to 10 mV
	20 mV	-20 to 20 mV
	50 mV	-50 to 50 mV
	100 mV	-100 to 100 mV
	5 V	-5 to 5 V
	10 V	-10 to 0 V
DC current	20 mA	0 to 20 mA
Resistance thermometer	JPt100	-200.0 to $649.0^{\circ} \mathrm{C}$ -200.0 to $400.0^{\circ} \mathrm{C}$ -200.0 to $200.0^{\circ} \mathrm{C}$ -100.0 to $100.0^{\circ} \mathrm{C}$
	Old Pt100	$\begin{array}{ll} \hline-200.0 \text { to } & 649.0^{\circ} \mathrm{C} \\ -200.0 \text { to } & 400.0^{\circ} \mathrm{C} \\ -200.0 \text { to } & 200.0^{\circ} \mathrm{C} \\ -100.0 \text { to } & 100.0^{\circ} \mathrm{C} \end{array}$
	JPt50	-200.0 to $649.0^{\circ} \mathrm{C}$
	Pt100	-200.0 to $850.0^{\circ} \mathrm{C}$ -200.0 to $400.0^{\circ} \mathrm{C}$ -200.0 to $200.0^{\circ} \mathrm{C}$ -100.0 to $100.0^{\circ} \mathrm{C}$

-4-wire resistance thermometer

Measuring ranges		Scale ranges
Resistance thermometer	JPt100	$\begin{aligned} & -200.0 \text { to } 649.0^{\circ} \mathrm{C} \\ & -200.0 \text { to } 400.0^{\circ} \mathrm{C} \\ & -200.0 \text { to } 200.0^{\circ} \mathrm{C} \\ & -100.0 \text { to } 100.0^{\circ} \mathrm{C} \end{aligned}$
	Old Pt100	$\begin{aligned} & -200.0 \text { to } 649.0^{\circ} \mathrm{C} \\ & -200.0 \text { to } 400.0^{\circ} \mathrm{C} \\ & -200.0 \text { to } 200.0^{\circ} \mathrm{C} \\ & -100.0 \text { to } 100.0^{\circ} \mathrm{C} \end{aligned}$
	JPt50	-200.0 to $649.0^{\circ} \mathrm{C}$
	Pt-Co	4.0 to 374.0 K
	Pt100	$\begin{aligned} & -200.0 \text { to } 850.0^{\circ} \mathrm{C} \\ & -200.0 \text { to } 400.0^{\circ} \mathrm{C} \\ & -200.0 \text { to } 200.0^{\circ} \mathrm{C} \\ & -100.0 \text { to } 100.0^{\circ} \mathrm{C} \end{aligned}$

[Standards]

K,E,J,T,R,S,B,N:IEC584(1977,1982),JIS C 1602 -1995,JIS C 1605-1995
WRe5-WRe26,W-WRe26,NiMo-Ni,Platinel
II,CR-AuFe,PtRh40-PtRh20:ASTMVol. 14.03
U,L:DIN43710-1985
Pt100:IEC751(1995), JIS C 1604-1997
OldPt100: IEC751(1983),JIS C 1604-1989, JIS C 1606 -1989
JPt100:JIS C 1604-1981,JIS C 1606-1986
JPt50:JIS C 1604-1981

NAMES OF VARIOUS PARTS

1. Operation status (RUN) indication Lights in operation.
2. Operation stop (STOP) indication Lights in the state of operation stop.
3. RESET indication

Lights when operation is cancelled and returns to the start point.
4. Constant value operation (CONST) indication

Light in constant value operation.
5. Pattern No. (PTN) indication
6. Alarm-standby (WAIT) indication

Lights in alarm-standby status or when alarm is cancelled.
Blinks when standby time alarm is activated.
7. Program remote (REM) indication

Lights when operation is executed by digital input.
8. Executing step number (STP) indication

The step No. being executed is indicated.
(Blinks in real temperature compensation operation.)
9. Error (ERR) indication

Lights when sampling of input is abnormal.
10. Auto-tuning operation (AT) indication Lights in auto-tuning operation.
11. Manual operation (MAN1/MAN2) indication

Lights when the output No. 1 or No. 2 is in manual output operation.
12. Function (FNC) operation indication Lights when the function key is operated.
20. Process value (PV) indication
21. Set value (SV) indication
22. Time signal (TS1 to TS8) indication

Alarm activation (AL1 to 4) indication

Function keys

13. FNC key

With the operation screen displayed, pressing it puts the controller in the operation key mode. With the settings screen displayed, pressing it puts the controller in the setting key mode and it operates to move the cursor backwards.
14. RUN key

In the operation key mode, it operates as RUN key. With the settings screen displayed, pressing it puts the controller in the setting key mode and it is used for switching between the operation screen and the mode screen of Mode 0 , or for switching from the settings screen to the mode screen.
15. STOP key

In the operation key mode, it operates as STOP key. With the settings screen displayed, pressing it puts the controller in the setting key mode and it is used to switch the settings screen.
16. ADV (Advance) key

In the operation key mode, it operates as ADV key. With the settings screen displayed, pressing it puts the controller in the setting key mode and it is used for moving the cursor and for selecting a parameter.
17. RESET key

In the operation key mode, it operates as RESET key. With the settings screen displayed, pressing it puts the controller in the setting key mode and it is used for changing a setting value (or selecting a parameter) in descending order.
18. PTN (Pattern) key

In the operation key mode, it operates as PTN key. With the settings screen displayed, pressing it puts the controller in the setting key mode and it is used for changing a setting value (or selecting a parameter) in ascending order.
19. A/M (Auto/Manual) key

In the operation key mode, it operates as A / M key. With the settings screen displayed, pressing it puts the controller in the setting key mode and it is used for registering the settings.
24. Engineering port

Lower display
23. A wide variety of operation screens are prepared and arbitrarily-selection is enabled.

On the whole program pattern display screen, the simultaneous display of the shape of whole program pattern and the progressed pattern position has been realized.

Time screen

Pattern screen

■ INPUT SPECIFICATIONS

Input signal: Thermocouple
B, R, S, K, E, J, T, N, WRe5-WRe26, W-WRe26, NiMo-Ni, CR-AuFe, PR5-20, PtRh40-PtRh20,
Platinel II, U, L
DC voltage
$\pm 10 \mathrm{mV}, \pm 20 \mathrm{mV}, \pm 50 \mathrm{mV}, \pm 100 \mathrm{mV}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$
DC 0 to 20 mA
Resistance thermometer
Pt100, JPt100, Old Pt100, JPt50, Pt-Co
Measuring range: Thermocouple 28 ranges,
DC voltage 6 ranges,
DC current1 range,
Resistance thermometer 14 ranges.
*For details, refer to [Measurement ranges].
Accuracy rating: $\quad \pm 0.1 \%$ of measurement range ± 1 digit
*For details, refer to [Detailed specifications of accuracy ratings].
Reference junction compensation accuracy:
$\mathrm{K}, \mathrm{E}, \mathrm{J}, \mathrm{T}, \mathrm{N}$, Platinel II $--- \pm 0.5^{\circ} \mathrm{C}$ or a value equivalent
to $\pm 20 \mu \mathrm{~V}$, whichever is greater
(at ambient temperature of $23^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$)
Others $-- \pm 1.0^{\circ} \mathrm{C}$ or a value equivalent to $\pm 40 \mu \mathrm{~V}$,
whichever is greater
Resolution: Approximately $1 / 30000$
Sampling rate: Approximately 0.1 seconds
Burnout: Upscale burnout is only enabled in thermocouple, DC voltage ($\pm 50 \mathrm{mV}$ or less) and resistance thermometer (3-wire type). For the burnout, the output value of Output No. 1 can be set arbitrarily, the output value of Output No. 2 is fixed at 0% and the high limit alarm is set at ON (for the upscale burnout).
(The burnout is disabled in DC voltage $(\pm 100 \mathrm{mV}$ or more), DC current, resistance temperature (4-wire type).
Input impedance: Thermocouple $1 \mathrm{M} \Omega$ or more
DC voltage $\quad 1 \mathrm{M} \Omega$ or more
DC current Approximately 250Ω
Allowable signal source resistance:
Thermocouple 100Ω or less
DC voltage (mV) 100Ω or less
DC voltage (V) 300Ω or less
Allowable wire resistance (resistance thermometer):
5Ω or less (Same resistance for all wires)
Rated current (resistance thermometer):
Approximately 1 mA
Maximum allowable input:
Thermocouple $\pm 20 \mathrm{~V}$ or less
DC voltage $\pm 20 \mathrm{~V}$ or less
DC current $\pm 30 \mathrm{~mA}$ or less $\pm 7.5 \mathrm{~V}$ or less
Resistance thermometer 500Ω or less, $\pm 5 \mathrm{~V}$ or less
Maximum common mode voltage:
30VAC
Common mode rejection ratio:
130 dB or more $(50 / 60 \mathrm{~Hz})$
Normal mode rejection ration:
50 dB or more $(50 / 60 \mathrm{~Hz})$

DISPLAY SPECIFICATIONS

Display element:	Upper display LED
Lower display LCD (with back light) 108×24 dots	
Display content:	Upper display
PV 5-digit, SV 5-digit, status indications, etc.	
	Lower display
	MV, output status, setting screens, etc.

CONTROL SPECIFICATIONS

Control cycle:	Approximately 0.1 seconds
Output type:	ON-OFF pulse type, ON-OFF servo type, Current output type, SSR drive pulse type, Voltage output type
ON-OFF pulse type:	Output signal ON-OFF pulse conductive signal
	Contact capacity
	Resistive load 100 to 240VAC 30VDC 5A or less
	Inductive load 100 to 240VAC 30VDC 2.5A or less
	Smallest load 5VDC 10mA or more
	Contact protection Small CR element built-in
	ON-OFF pulse cycle 1 to 180 seconds
ON-OFF servo type:	Output signal ON-OFF servo conductive signal
	Contact capacity of standard load
	Resistive load 100 to 240VAC 30VDC 5A or less
	Inductive load 100 to 240VAC 30VDC 2.5A or less
	Smallest load 5VDC 10mA or more
	Contact capacity of very light load
	Resistive load 100 to 240VAC 30VDC 20 mA or less
	Inductive load 100 to 240VAC 30VDC 20 mA or less
	Smallest load 5VDC 1mA or more
	Feedback resistance 100 1 to 2k Ω
	Contact protection Small CR element built-in
Current output type:	Output signal 4 to 20 mA
	Load resistance 750Ω or less
SSR drive pulse type:	
	Output signal ON-OFF pulse voltage signal
	Output voltage ON voltage 12VDC $\pm 20 \%$
	OFF voltage 0.8 VDC or less
	Load current 20 mA or less
	Pulse cycle 1 to 180 seconds
Voltage output type:	Output signal 0 to 10V
	Output impedance Approx 10Ω
	Load resistance $50 \mathrm{k} \Omega$ or more
Output limiter:	-5.0 to 105.0\%
Rate-of-change limiter for output:	
	0.1 to 100.0\%
Output preset:	With P action (Settings of I and $\mathrm{D}=0$), Output at $\mathrm{PV}=$
	SV -100.0 to 100.0\%
	Output No. 2 is 0\%.
Output deadband:	In case of 2-position control (Setting of $\mathrm{P}=0$), Setting range 0.1 to 9.9%
Control action:	With direct/reverse selection
Output at PV abnormality:	
	Over-range, under-range, abnormal internal data
Manual output operation:	
	Output by manual setting -5.0 to 105.0\%
	MAN \rightarrow AUTO Balanceless bumpless
	AUTO \rightarrow MAN Keeping output at AUTO

SETTING SPECIFICATIONS
Number of patterns: 30 patterns

ALARM SPECIFICATIONS

Number of alarm points:
Alarm types: Absolute value alarm, deviation alarm, absolute value deviation alarm, setting value alarm, output value alarm, FAIL, timer
Output signal: \quad Relay output signal (a contact)
1 common terminal for AL1 and AL2, 1 common terminal for AL3 and AL4
Contact capacity
Resistance load 100 to 240VAC 30VDC 3A or less Inductive load 100 to 240VAC 30VDC 1.5A or less Smallest load 5VDC 10mA or more

GENERAL SPECIFICATIONS
Rated power voltage:
General power supply specifications 100 to 240 VAC
24 V Power supply specifications 24VAC/24VDC
Rated power supply frequency:
General power supply specifications $50 / 60 \mathrm{~Hz}$
24 V Power supply specification $50 / 60 \mathrm{~Hz}$ (24VAC)
Maximum power consumption:
General power supply specifications

Without options	100VAC 10VA
	240VAC 15VA
With options	100VAC 15VA
	240VAC 20VA
Power supply specifications	
Without options	24VAC 10VA
	24VDC 5W
With options	24VAC 15VA
	24VDC 10W

Working temperature range:
-10 to $50^{\circ} \mathrm{C}$
Working humidity range:
10 to $90 \% \mathrm{RH}$
Power failure countermeasures:
Settings stored in EEPROM (Rewrite count: One million times or less) and stored by a lithium battery for 5 years or more
Terminal screws: M3.5
Insulation resistance: Between primary terminals and secondary terminals $20 \mathrm{M} \Omega$ or more (500VDC)
Between primary terminals and ground terminal $20 \mathrm{M} \Omega$ or more (500VDC)
Between secondary terminals and ground terminal $20 \mathrm{M} \Omega$ or more (500VDC)
Withstand voltage: Between primary terminals and secondary terminals 1500VAC (For 1 minute)
Between primary terminals and ground terminal 1500VAC (For 1 minute)
Between secondary terminals and ground terminal 500VAC (For 1 minute)
*Primary terminal: Terminals for power supply (100 to
240VAC), control output and alarm output
Casing: Fire-retardant polycarbonate
Color:
Gray or black
Mounting: Panel mounting
External dimensions: 96 (H) $\times 96$ (W) $\times 127$ (D) mm
*The depth from the front panel is 120 mm .
Weight: Without options Approximately 450 g
With options Approximately 580g

SAFTY STANDARD

CE
EN61326: 1997 +A1+A2+A3
EN61010-1: 2001 (Overvoltage category II, pollution degree 2)
Under the test conditions of EMC directives, there may be variation of indication value or output value which is equivalent to maximum $\pm 10 \%$ or maximum 2 mV , whichever is greater..
UL: UL61010-1 2nd edition
c-UL:
CAN/CSA C22.2 No.61010-1-04

- REFERENCE OPERATING CONDITIONS

Ambient temperature: $\quad 23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
Ambient humidity: $\quad 55 \% R H \pm 5 \%$ (No dew condensation)
Power voltage:
General power supply specifications

$$
100 \mathrm{VAC} \pm 1 \%
$$

24 V power supply specifications

24VDC $\pm 1 \%$

Power supply frequency:
General power supply specifications
$50 / 60 \mathrm{~Hz} \pm 0.5 \%$
24 V power supply specifications DC

Mounting angle:	Forward or backward $\pm 3^{\circ}$, lateral $\pm 3^{\circ}$
Installation height:	Altitude 2000m or below
Vibration:	$0 \mathrm{~m} / \mathrm{s} 2$
Shock:	$0 \mathrm{~m} / \mathrm{s} 2$
Mounting condition:	Single-unit panel mounting (Space above, below, right and left of unit is needed.)
Wind:	None
External noise:	None
Warm up time:	30 minutes or longer

NORMAL OPERATING CONDITIONS

Ambient temperature: $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(-10^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}$ for closed mounting) Ambient humidity: $\quad 10$ to 90% RH (no dew condensation)
Power voltage:
General power supply specifications 90 to 264VAC
24 V Power supply specifications 21.6 to $26.4 \mathrm{VDC} / \mathrm{AC}$
Power supply frequency:
General power supply specifications $50 / 60 \mathrm{~Hz} \pm 2 \%$
24 V Power supply specifications DC, $50 / 60 \mathrm{~Hz} \pm 2 \%$
Mounting angle:
Installation height: Altitude 2000 m or below
Vibration: $\quad 2 \mathrm{~m} / \mathrm{s}^{2}$
Shock: $\quad 0 \mathrm{~m} / \mathrm{s}^{2}$
Mounting condition: Single-unit panel mounting (Space above and below of the unit is needed.)
External noise: None
Rate of ambient temperature change:
$10^{\circ} \mathrm{C}$ /hour or less

TRANSPORT CONDITIONS

Ambient temperature: $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Ambient humidity: $\quad 5$ to $90 \% \mathrm{RH}$ (no dew condensation)
Vibration: $\quad 4.9 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 60 Hz)
Shock: $\quad 392 \mathrm{~m} / \mathrm{s}^{2}$
Under the condition that the unit is packed for shipment by the factory

STORAGE CONDITIONS

Ambient temperature: $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
For long term storage, the temperature should be $10^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.
Ambient humidity:
Vibration:
Shock:
$0 \mathrm{~m} / \mathrm{s}^{2}$
$0 \mathrm{~m} / \mathrm{s}^{2}$
Under the condition that the unit is packed for shipment by the factory

OPTIONS

- Transmission signal output

Output a signal corresponding to set value (SV), process value (PV),
manipulated vale (M) , etc.
Number of output: 1 point
Output signal: $\quad 4-20 \mathrm{~mA}$ (Load resistance 400Ω or less)
0-1V
(Output resistance Approx.10 Ω, Load resistance $50 \mathrm{k} \Omega$ or more)
0-10V
(Output resistance Approx.10 , Load resistance
$50 \mathrm{k} \Omega$ or more)
Output accuracy:
Output resolution
General type
General type $\quad \pm 0.3 \%$ of full scale
High-precision type Approx. 1/30000
General type Approx. 1/15000

- Communications interface

With RS232C, RS422A or RS485, the setting and measured values of the controller can be transmitted to a master CPU and various parameters can be set by the master CPU.
Number of communications port:
2 ports
Communications type: RS232C, RS422A, RS485
Communication speed: 2400/4800/9600/19200/38400 bps
Protocol: MODBUS (RTU), MODBUS (ASCII), PRIVATE

- Heater disconnection alarm

It is the function for detecting heater disconnection by CT input
Measurement range: 10 to 100 A AC $(50 / 60 \mathrm{~Hz})$
Accuracy rating: $\pm 5.0 \%$ of full scale ± 1 digit
Designated CT: Use [CTL-12-S36-8] made by URD Co., Ltd.

- Panel sealing

By mounting the controller to a panel, it has the panel sealing equivalent to
[IP54 compliance].

- Terminal cover

It covers the terminals for safe. The cover is transparent.

2-output type

2 kinds of output with direct and reverse actions are outputted and simultaneous control of heating/cooling is enabled.
Control period: Approx. 0.1 seconds
Output type: ON-OFF pulse type, Current output type, Voltage output type, SSR drive pulse type
Any combinations of these types are enabled.
PID system
Control system

- Digital input (DI)

The following switching is enabled by digital input signal.
input signal: No-voltage contact, open-collector signal
External contact capacity:
5 VDC 2 mA
Functions: \quad. Selection of pattern No. (6 points)
2. Manual output operation/automatic output operation (2 points)
3. Holding of PV
4. Run/stop
5. Advance
6. Reset
7. Wait
8. Fast
9. Start/reset of timer (4 points)
10. Alarm output cancellation
11. Preset manual/Automatic output operation

- Digital output (DO)

Time signal or status signal can be outputted externally open-collector signal.

Output signal:
Capacity:
Functions:

Open-collector signal
24 VDC , Maximum 50 mA

1. Time signal (Maximum 8 points)
2. Run/stop
3. Advance
4. Reset
5. Wait
6. End

DETAILED SPECIFICATIONS OF ACCURACY RATING

Input type		Accuracy rating	Exceptional specifications
Thermocouple	B	$\pm 0.1 \% \pm 1$ digit	Less than $400^{\circ} \mathrm{C}$: Not specified $/ 400^{\circ} \mathrm{C}$ to less than $800^{\circ} \mathrm{C}$: $\pm 0.2 \% \pm 1$ digit
	R, S		$0^{\circ} \mathrm{C}$ to less than $400^{\circ} \mathrm{C}$: $\pm 0.2 \% \pm 1$ digit
	N		
	K		$-200^{\circ} \mathrm{C}$ to less than $0^{\circ} \mathrm{C}: \pm 0.2 \% \pm 1$ digit or the value equivalent to $\pm 60 \mu \mathrm{~V}$, whichever is greater
	E		$-270^{\circ} \mathrm{C}$ to less than $0^{\circ} \mathrm{C}: \pm 0.2 \% \pm 1$ digit or the value equivalent to $\pm 80 \mu \mathrm{~V}$, whichever is greater
	J		$-200^{\circ} \mathrm{C}$ to less than $0^{\circ} \mathrm{C}: \pm 0.2 \% \pm 1$ digit or the value equivalent to $\pm 80 \mu \mathrm{~V}$, whichever is greater
	T		$-270^{\circ} \mathrm{C}$ to less than $0^{\circ} \mathrm{C}: \pm 0.2 \% \pm 1$ digit or the value equivalent to $\pm 40 \mu \mathrm{~V}$, whichever is greater
	U		$-200^{\circ} \mathrm{C}$ to less than $0^{\circ} \mathrm{C}: \pm 0.2 \% \pm 1$ digit or the value equivalent to $\pm 40 \mu \mathrm{~V}$, whichever is greater
	L		$-200^{\circ} \mathrm{C}$ to less than $0^{\circ} \mathrm{C}$: $\pm 0.2 \% \pm 1$ digit
	WRe5-WRe26		
	W-WRe26		$0^{\circ} \mathrm{C}$ to less than $400^{\circ} \mathrm{C} \pm 0.3 \% \pm 1$ digit
	NiMo-Ni		
	Platinel II		
	CR-AuFe	$\pm 0.2 \% \pm 1$ digit	OK to less than $200 \mathrm{~K}: \pm 0.5 \% \pm 1$ digit / 20 K to less than $50 \mathrm{~K}: \pm 0.3 \% \pm 1$ digit
	PR5-20		$0^{\circ} \mathrm{C}$ to less than $100^{\circ} \mathrm{C}$: Not specified $/ 100^{\circ} \mathrm{C}$ to less than $200^{\circ} \mathrm{C}: \pm 0.5 \% \pm 1$ digit
	PtRh40-PtRh20		$0^{\circ} \mathrm{C}$ to less than $400^{\circ} \mathrm{C}$: $\pm 1.5 \% \pm 1$ digit $/ 400^{\circ} \mathrm{C}$ to less than $800^{\circ} \mathrm{C}: \pm 0.8 \% \pm 1$ digit
DC voltage / DC current		$\pm 0.1 \% \pm 1$ digit	
Resistance thermometer	$\begin{gathered} \text { Pt100 } \\ \text { Old Pt100 } \\ \text { JPt100 } \\ \hline \end{gathered}$	$\pm 0.1 \% \pm 1$ digit	For the measuring range of $\left[-100^{\circ} \mathrm{C}\right.$ to $\left.100^{\circ} \mathrm{C}\right]$ only: $\pm 0.15 \% \pm 1$ digit
	JPt50		
	Pt-Co	$\pm 0.15 \% \pm 1$ digit	4 K to less than $20 \mathrm{~K}: \pm 0.5 \% \pm 1$ digit / 20 K to less than $50 \mathrm{~K}: \pm 0.3 \% \pm 1$ digit

[^0]- TERMINAL ARRANGEMENT

-Option terminals

- Option terminals (continued)

Digital input/output + Heater disconnection alarm (3rd zone)

U	V	W	X	Y	Z	
DI	CT	DO	CT	DO	DO	(26)
DI	CT	DO	CT	DO	DO	27
DI	DI	DO	DO	DO	DO	28
DI	DI	DO	DO	DO	DO	29
DI	DI	DO	DO	DO	DI	(30)
DI	DI	DO	DO	DI	DI	(31)
DI	DI	DO	DO	DI	DI	(32)
DI	DI	DO	DO	DI	DI	(33)
COM	COM	COM	COM	COM	COM	34
$\begin{aligned} & \text { ts } \\ & \text { ts }+\mathrm{Hea} \end{aligned}$ outs	alarm	X: 6 Digital outputs + Heater disconnection alarm Y: 3 Digital inputs +5 Digital outputs Z: 4 Digital inputs +4 Digital outputs				

- ABOUT CRIMP STYLE TERMINALS

-Spade type

EXTENAL DIMENSIONES

OHINO OOFRPOREATION

32-8 KUMANO-CHO, ITABASHI-KU, TOKYO 173-8632
PHONE: +81-3-3956-2171
FAX: +81-3-3956-0915
E-mail: inter@chino.co.jp
Website: http://www.chino.co.jp

[^0]: * The above ratings are the measurement range conversion accuracies under the reference operating conditions.

 For thermocouple inputs, the reference junction compensation accuracy is added.

 * K, E, J, T, R, S, B, N : IEC584 (1977, 1982), JIS C 1602-1995, JIS C 1605-1995

 WRe5-WRe26, W-WRe26, NiMo-Ni, Platinel II, CR-AuFe, PtRh40-PtRh20 : ASTM Vol. 14.03
 U, L: DIN43710-1985
 Pt100: IEC751 (1995), JIS C 1604-1997
 Old dPt100: IEC751 (1983), JIS C 1604-1989, JIS C 1606-1989
 JPt100 : JIS C 1604-1981, JIS C 1606-1986
 JPt50 : JIS C 1604-1981

